3.319 \(\int \frac{x^{7/2}}{b x^2+c x^4} \, dx\)

Optimal. Leaf size=202 \[ \frac{\sqrt [4]{b} \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}+\frac{\sqrt [4]{b} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{\sqrt{2} c^{5/4}}+\frac{2 \sqrt{x}}{c} \]

[Out]

(2*Sqrt[x])/c + (b^(1/4)*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(Sqrt[2]*c^(5/4)) - (b^(1/4)*ArcTan[1
+ (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(Sqrt[2]*c^(5/4)) + (b^(1/4)*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[
x] + Sqrt[c]*x])/(2*Sqrt[2]*c^(5/4)) - (b^(1/4)*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(2
*Sqrt[2]*c^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.184984, antiderivative size = 202, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.474, Rules used = {1584, 321, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac{\sqrt [4]{b} \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}+\frac{\sqrt [4]{b} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{\sqrt{2} c^{5/4}}+\frac{2 \sqrt{x}}{c} \]

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(b*x^2 + c*x^4),x]

[Out]

(2*Sqrt[x])/c + (b^(1/4)*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(Sqrt[2]*c^(5/4)) - (b^(1/4)*ArcTan[1
+ (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(Sqrt[2]*c^(5/4)) + (b^(1/4)*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[
x] + Sqrt[c]*x])/(2*Sqrt[2]*c^(5/4)) - (b^(1/4)*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(2
*Sqrt[2]*c^(5/4))

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{7/2}}{b x^2+c x^4} \, dx &=\int \frac{x^{3/2}}{b+c x^2} \, dx\\ &=\frac{2 \sqrt{x}}{c}-\frac{b \int \frac{1}{\sqrt{x} \left (b+c x^2\right )} \, dx}{c}\\ &=\frac{2 \sqrt{x}}{c}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{b+c x^4} \, dx,x,\sqrt{x}\right )}{c}\\ &=\frac{2 \sqrt{x}}{c}-\frac{\sqrt{b} \operatorname{Subst}\left (\int \frac{\sqrt{b}-\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{c}-\frac{\sqrt{b} \operatorname{Subst}\left (\int \frac{\sqrt{b}+\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{c}\\ &=\frac{2 \sqrt{x}}{c}-\frac{\sqrt{b} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{2 c^{3/2}}-\frac{\sqrt{b} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{2 c^{3/2}}+\frac{\sqrt [4]{b} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} c^{5/4}}+\frac{\sqrt [4]{b} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} c^{5/4}}\\ &=\frac{2 \sqrt{x}}{c}+\frac{\sqrt [4]{b} \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt{2} c^{5/4}}+\frac{\sqrt [4]{b} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt{2} c^{5/4}}\\ &=\frac{2 \sqrt{x}}{c}+\frac{\sqrt [4]{b} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt{2} c^{5/4}}+\frac{\sqrt [4]{b} \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}-\frac{\sqrt [4]{b} \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{2 \sqrt{2} c^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.0354507, size = 189, normalized size = 0.94 \[ \frac{\sqrt{2} \sqrt [4]{b} \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )-\sqrt{2} \sqrt [4]{b} \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )+2 \sqrt{2} \sqrt [4]{b} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )-2 \sqrt{2} \sqrt [4]{b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )+8 \sqrt [4]{c} \sqrt{x}}{4 c^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(b*x^2 + c*x^4),x]

[Out]

(8*c^(1/4)*Sqrt[x] + 2*Sqrt[2]*b^(1/4)*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)] - 2*Sqrt[2]*b^(1/4)*ArcTa
n[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)] + Sqrt[2]*b^(1/4)*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqr
t[c]*x] - Sqrt[2]*b^(1/4)*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(4*c^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 140, normalized size = 0.7 \begin{align*} 2\,{\frac{\sqrt{x}}{c}}-{\frac{\sqrt{2}}{4\,c}\sqrt [4]{{\frac{b}{c}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) \left ( x-\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) ^{-1}} \right ) }-{\frac{\sqrt{2}}{2\,c}\sqrt [4]{{\frac{b}{c}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}+1 \right ) }-{\frac{\sqrt{2}}{2\,c}\sqrt [4]{{\frac{b}{c}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(c*x^4+b*x^2),x)

[Out]

2*x^(1/2)/c-1/4/c*(b/c)^(1/4)*2^(1/2)*ln((x+(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x-(b/c)^(1/4)*x^(1/2)*2^
(1/2)+(b/c)^(1/2)))-1/2/c*(b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)-1/2/c*(b/c)^(1/4)*2^(1/2)*
arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.32815, size = 312, normalized size = 1.54 \begin{align*} -\frac{4 \, c \left (-\frac{b}{c^{5}}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{c^{2} \sqrt{-\frac{b}{c^{5}}} + x} c^{4} \left (-\frac{b}{c^{5}}\right )^{\frac{3}{4}} - c^{4} \sqrt{x} \left (-\frac{b}{c^{5}}\right )^{\frac{3}{4}}}{b}\right ) + c \left (-\frac{b}{c^{5}}\right )^{\frac{1}{4}} \log \left (c \left (-\frac{b}{c^{5}}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - c \left (-\frac{b}{c^{5}}\right )^{\frac{1}{4}} \log \left (-c \left (-\frac{b}{c^{5}}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - 4 \, \sqrt{x}}{2 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2),x, algorithm="fricas")

[Out]

-1/2*(4*c*(-b/c^5)^(1/4)*arctan((sqrt(c^2*sqrt(-b/c^5) + x)*c^4*(-b/c^5)^(3/4) - c^4*sqrt(x)*(-b/c^5)^(3/4))/b
) + c*(-b/c^5)^(1/4)*log(c*(-b/c^5)^(1/4) + sqrt(x)) - c*(-b/c^5)^(1/4)*log(-c*(-b/c^5)^(1/4) + sqrt(x)) - 4*s
qrt(x))/c

________________________________________________________________________________________

Sympy [A]  time = 130.819, size = 177, normalized size = 0.88 \begin{align*} \begin{cases} \tilde{\infty } \sqrt{x} & \text{for}\: b = 0 \wedge c = 0 \\\frac{2 x^{\frac{5}{2}}}{5 b} & \text{for}\: c = 0 \\\frac{2 \sqrt{x}}{c} & \text{for}\: b = 0 \\\frac{\sqrt [4]{-1} \sqrt [4]{b} \log{\left (- \sqrt [4]{-1} \sqrt [4]{b} \sqrt [4]{\frac{1}{c}} + \sqrt{x} \right )}}{2 c^{8} \left (\frac{1}{c}\right )^{\frac{27}{4}}} - \frac{\sqrt [4]{-1} \sqrt [4]{b} \log{\left (\sqrt [4]{-1} \sqrt [4]{b} \sqrt [4]{\frac{1}{c}} + \sqrt{x} \right )}}{2 c^{8} \left (\frac{1}{c}\right )^{\frac{27}{4}}} + \frac{\sqrt [4]{-1} \sqrt [4]{b} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{b} \sqrt [4]{\frac{1}{c}}} \right )}}{c^{8} \left (\frac{1}{c}\right )^{\frac{27}{4}}} + \frac{2 \sqrt{x}}{c} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(c*x**4+b*x**2),x)

[Out]

Piecewise((zoo*sqrt(x), Eq(b, 0) & Eq(c, 0)), (2*x**(5/2)/(5*b), Eq(c, 0)), (2*sqrt(x)/c, Eq(b, 0)), ((-1)**(1
/4)*b**(1/4)*log(-(-1)**(1/4)*b**(1/4)*(1/c)**(1/4) + sqrt(x))/(2*c**8*(1/c)**(27/4)) - (-1)**(1/4)*b**(1/4)*l
og((-1)**(1/4)*b**(1/4)*(1/c)**(1/4) + sqrt(x))/(2*c**8*(1/c)**(27/4)) + (-1)**(1/4)*b**(1/4)*atan((-1)**(3/4)
*sqrt(x)/(b**(1/4)*(1/c)**(1/4)))/(c**8*(1/c)**(27/4)) + 2*sqrt(x)/c, True))

________________________________________________________________________________________

Giac [A]  time = 1.15255, size = 240, normalized size = 1.19 \begin{align*} -\frac{\sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{2 \, c^{2}} - \frac{\sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{2 \, c^{2}} - \frac{\sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{4 \, c^{2}} + \frac{\sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{4 \, c^{2}} + \frac{2 \, \sqrt{x}}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/c^2 - 1/2*sqrt(2)
*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/c^2 - 1/4*sqrt(2)*(b*c^3)^(1
/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^2 + 1/4*sqrt(2)*(b*c^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(b/c
)^(1/4) + x + sqrt(b/c))/c^2 + 2*sqrt(x)/c